

COURSE STRUCTURE AND DETAILED SYLLABUS

For

**II B.TECH
ELECTRONICS AND
COMMUNICATION ENGINEERING**

(Applicable for the batches admitted from 2018-19)

CONTENTS

S.No	Sub. Code	Particulars / Name of the Subject	Page No.
	Course Structure	II-I SEM	3
		II-II SEM	3
Detailed Syllabus			
II year - I Semester			
1	18PC0EC01	Electronic Devices And Circuits	4
2	18PC0EC02	Digital System Design	6
3	18PC0EC03	Signals and Systems	8
4	18ES0EE03	Network Theory	10
5	18PC0EC04	Electronics Devices Laboratory	11
6	18PC0EC05	Digital System Design Laboratory	12
7	18BS0MA03	Mathematics III	13
8	18PC0EC06	Basic Simulation Laboratory	15
9	18MC0EN01	Constitution of India	16
II year - II Semester			
1	18PC0EC07	Analog and Digital Communication	18
2	18PC0EC08	Analog Circuits	20
3	18PC0EC09	Probability Theory and Stochastic Processes	22
4	18PC0EC10	Analog and Digital Communication Laboratory	24
5	18PC0EC11	Analog Circuits Laboratory	25
6	18ES0EE04	Control System	26
7	18BS0MA04	Mathematics IV	28
8	18SSMB02	Economics for Engineers	30

Guru Nanak Institutions Technical Campus (Autonomous)
School of Engineering & Technology
Department of ECE

COURSE STRUCTURE

(Applicable for the batch admitted from 2018-19)

II YEAR I SEMESTER

Sl. No.	Code	Group	Subject	L	T	P	Contact hrs/wk	C
1	18PC0EC01	PC	Electronic Devices And Circuits	3	0	0	3	3
2	18PC0EC02	PC	Digital System Design	3	0	0	3	3
3	18PC0EC03	PC	Signals and Systems	3	1	0	4	4
4	18ES0EE03	ES	Network Theory	3	1	0	4	4
5	18PC0EC04	PC	Electronics Devices Laboratory	0	0	2	2	1
6	18PC0EC05	PC	Digital System Design Laboratory	0	0	2	2	1
7	18BS0MA03	BS	Mathematics III	3	1	0	4	4
8	18PC0EC06	PC	Basic Simulation Laboratory	0	0	2	2	1
			Total Credits					21
9	18MC0EN01	MC	Constitution of India	3	0	0	3	0

II YEAR II SEMESTER

Sl. No.	Code	Group	Subject	L	T	P	Contact hrs/wk	C
1	18PC0EC07	PC	Analog and Digital Communication	3	0	0	3	3
2	18PC0EC08	PC	Analog Circuits	3	0	0	3	3
3	18PC0EC09	PC	Probability Theory and Stochastic Processes	3	1	0	4	4
4	18PC0EC10	PC	Analog and Digital Communication Laboratory	0	0	2	2	1
5	18PC0EC11	PC	Analog Circuits Laboratory	0	0	2	2	1
6	18ES0EE04	PC	Control System	3	0	0	3	3
7	18BS0MA04	BS	Mathematics IV	3	0	0	3	3
8	18SSMB02	HS	Economics for Engineers	3	0	0	3	3
			Total Credits					21

II Year B.Tech. ECE I-Sem

L T P C
3 0 0 3

(18PC0EC01) ELECTRONIC DEVICES AND CIRCUITS

Prerequisite: Nil

Course Objectives:

Understand the structure of basic electronic devices and IC fabrication.

Familiarize the operation, characteristics and applications of transistor like BJT and FET.

Course Outcomes:

At the end of this course students will demonstrate the ability to

1. Understand the principles of semiconductor Physics.
2. Understand various types of diodes, characteristics of diodes.
3. Understand the working of transistors like BJT, FETs, and MOSFETs.
4. Understand and utilize the mathematical models of semiconductor junctions and MOS transistors for circuits and systems.
5. Understand the Fabrication process.

Syllabus

UNIT I: Introduction to Semiconductor Physics

Introduction to Semiconductor Physics: Review of Quantum Mechanics, Energy bands in intrinsic and extrinsic silicon; Carrier transport: diffusion current, drift current, mobility and resistivity. Generation and recombination of carriers; Poisson and continuity equation P-N junction characteristics, Qualitative Theory of P-N Junction

UNIT II: Semiconductor Diodes

P-N Junction as a Diode, Diode Equation, Volt- Ampere Characteristics, Temperature dependence of VI characteristic, Ideal versus Practical-Resistance levels(Static and Dynamic), Transition and Diffusion Capacitances, Diode Equivalent Circuits, Load Line Analysis,

Breakdown Mechanisms in Semiconductor Diodes - Avalanche breakdown and Zener breakdown, Zener Diode Characteristics. Special Purpose Diodes: Tunnel diode, Varactor diode, Schottky diode, LED and photodiode

UNIT III: Transistor Characteristics

Bipolar Junction Transistor construction and operation , Transistor Current Components, , Ebers-Moll Model, Common Base, Common Emitter and Common Collector Configurations, Limits of Operation , BJT Specifications, Transistor as an Amplifier - Comparison of CB, CE and CC Configurations. Introduction to JFET - MOS construction , I-V characteristics.

UNIT IV: Biasing and Small Signal Model

Amplifier models: Voltage amplifier, current amplifier, trans-conductance amplifier and trans-resistance amplifier. Biasing schemes for BJT and FET amplifiers, bias stability, Small signal models of BJT and MOS transistor, BJT Hybrid Model - Determination of h-parameters.

UNIT V: Introduction to IC Fabrication Process

Integrated circuit fabrication process: oxidation, diffusion, ion implantation, photolithography, Etching, chemical vapor deposition, sputtering, twin-tub CMOS process.

Text Books:

1. Electronic Devices and Circuits – J. Millman, C.C.Halkias, and Satyabrata Jit,2 Ed.,1998, TMH.
2. G. Streetman, and S. K. Banerjee, “Solid State Electronic Devices,” 7th edition, Pearson,2014.
3. D. Neamen , D. Biswas "Semiconductor Physics and Devices," McGraw-Hill Education
4. S. M. Sze and K. N. Kwok, “Physics of Semiconductor Devices,” 3rd edition, John Wiley & Sons, 2006.

Reference Books:

1. C.T. Sah, “Fundamentals of solid state electronics,” World Scientific Publishing Co. Inc, 1991.
2. Y. Tsividis and M. Colin, “Operation and Modeling of the MOS Transistor,” Oxford Univ.Press, 2011.
3. Integrated Electronics – J. Millman and Christos C. Halkias, 1991 Ed., 2008, TMH.
4. Electronic Devices and Circuits – R.L. Boylestad and Louis Nashelsky, 9 Ed., 2006, PEI/PHI.

II Year B.Tech. ECE I-Sem

L T P C
3 0 0 3

(18PC0EC02) DIGITAL SYSTEM DESIGN

Prerequisite: Nil

Course Objective:

Student will be able to Learn and apply logic in digital systems for design and analysis.

Course outcomes:

At the end of this course students will demonstrate the ability to

1. Design and analyze combinational logic circuits
2. Design & analyze modular combinational circuits with MUX/DEMUX, Decoder, Encoder
3. Design & analyze synchronous sequential logic circuits
4. Use HDL & appropriate EDA tools for digital logic design and simulation

Syllabus

UNIT I: Boolean algebra and Logic Simplification

Review of Boolean Algebra and DeMorgan's Theorem, SOP & POS forms, Canonical forms, Karnaugh maps, tabulation method - up to 6 variables, Code Conversion, Binary codes, Introduction to Logic Gates.

UNIT II: Combinational and Sequential Logic Design

Combinational Logic design :Half and Full Adders, Subtractors, Serial and Parallel Adders, BCD Adder, Comparators, Multiplexers, Encoder, Decoder, Implementation of Boolean function using Multiplexers, decoders and universal gates.

Sequential Logic design : Latches and Flip-Flops, S-R, JK, D, T and Master-Slave JK Flip-Flop, Edge triggered Flip-Flop, Ripple and Synchronous counters, Shift registers,

UNIT III: Sequential machine Design

Finite State Machines, Design of synchronous FSM, Algorithmic State Machines charts. Designing synchronous circuits like Pulse train generator, Pseudo Random Binary Sequence generator, Clock generation.

UNIT IV: Logic Families and Semiconductor Memories

TTL NAND gate and Specifications: Noise margin, Propagation delay, fan-in, fan-out. Tristate TTL, ECL, CMOS families and their interfacing. Memory elements, Concept of Programmable logic devices: PAL, PLA, EPROM, FPGA. Logic implementation using Programmable Devices.

UNIT V: Introduction to HDL

HDL, different modeling styles in VHDL, Data types and objects, Dataflow. Behavioral and Structural Modeling, Synthesis and Simulation VHDL constructs and codes for combinational and sequential circuits.

Text Books:

1. Switching Theory And Logic Design-A. Anand Kumar PHI,2013
2. Charles Roth, "Digital System Design using VHDL", Tata McGraw Hill 2nd edition 2012
3. Digital Design-Third Edition ,M.Morris Mano,pearson Education/PHI

Reference Books:

1. R.P. Jain, "Modern digital Electronics", Tata McGraw Hill, 4th edition, 2009.
2. Douglas Perry, "VHDL", Tata McGraw Hill, 4th edition, 2002.
3. W.H. Gothmann, "Digital Electronics- An introduction to theory and practice", PHI, 2nd edition ,2006.
4. D.V. Hall, "Digital Circuits and Systems", Tata McGraw Hill, 1989

II Year B.Tech. ECE I-Sem

L T P C
3 1 0 4

(18PC0EC03) SIGNALS AND SYSTEMS

Prerequisite: Mathematics

Course Objective:

This gives the basics of signals and systems for all Electrical Engineering related courses.

Course outcomes:

1. At the end of this course students will demonstrate the ability to
2. Analyze different types of signals.
3. Represent continuous and discrete systems in time and frequency domain using different Transforms.
4. Investigate whether the system is stable.
5. Sampling and reconstruction of a signal.
6. Analyze continuous-time and discrete-time signals using Laplace and Z-transforms.

Syllabus

UNIT I: Introduction to Signals and Systems

Classification of Signals: Deterministic and Random Signals, Periodic and Non Periodic, Energy and power signals, Causal and Non-causal signals and Even and Odd signals, continuous and discrete time signals, Analog and Digital Signals. Classification of Systems, System properties: linearity: additively and homogeneity, shift-invariance, causality, stability, reliability, orthogonal signal space.

UNIT II: Fourier series and Fourier Transform

Fourier series representation, the Fourier Transform, properties of Fourier Transform, Fourier Transform of standard signals, convolution /multiplication and their effect in the frequency domain, magnitude and phase response, Fourier domain duality. The Discrete-Time Fourier Transform (DTFT) and the Discrete Fourier Transform (DFT). Parseval's Theorem.

UNIT III: Signal transmission through Linear systems

Linear shift-invariant (LSI) systems, impulse response and step response, convolution, input output, Behavior with a periodic convergent inputs. Characterization of causality and stability of linear shift-invariant systems. System representation through differential equations and difference equations. Periodic and semi-periodic inputs to an LSI system, the notion of a frequency response and its relation to the impulse response,

UNIT IV: Laplace Transform and Z-Transform

The Laplace Transform, notion of Eigen functions of LSI systems, a basis of Eigen functions, region of convergence, poles and zeros of system, Laplace domain analysis, solution to differential equations and system behavior. The z-Transform for discrete time signals and systems- Eigen functions, region of convergence, z-domain analysis.

UNIT V: State-space analysis and Sampling

State-space analysis and multi-input, multi-output representation. The state-transition matrix and its role. The Sampling Theorem and its implications- Spectra of sampled signals. Reconstruction: ideal interpolator, zero-order hold, first-order hold. Aliasing and its effects. Relation between continuous and discrete time systems.

Text books:

1. A.V. Oppenheim, A.S. Willsky and I.T. Young, "Signals and Systems", Prentice Hall, 1983.
2. B.P. Lathi, "Signal Processing and Linear Systems", Oxford University Press, c1998.
3. Simon Haykin, Barry van Veen, "Signals and Systems", John Wiley and Sons (Asia) Private Limited, c1998.
4. J. Nagrath, S. N. Sharan, R. Ranjan, S. Kumar, "Signals and Systems", TMH New Delhi, 2001.
5. Signals and Systems- A.RamaKrishna Rao-2008, TMH.

Reference books:

1. R.F. Ziemer, W.H. Tranter and D.R. Fannin, "Signals and Systems - Continuous and Discrete", 4th edition, Prentice Hall, 1998.
2. Papoulis, "Circuits and Systems: A Modern Approach", HRW, 1980.
3. Douglas K. Lindner, "Introduction to Signals and Systems", McGraw Hill International Edition: c1999.
4. Robert A. Gabel, Richard A. Roberts, "Signals and Linear Systems", John Wiley and Sons, 1995.
5. M. J. Roberts, "Signals and Systems - Analysis using Transform methods and MATLAB", TMH, 2003.
6. Ashok Ambardar, "Analog and Digital Signal Processing", 2nd Edition, Brooks/Cole Publishing Company (An international Thomson Publishing Company), 1999.
7. Signals and Systems- Iyer and K. Satya Prasad, Cengage Learning.
8. Signals and Systems- A. Anand Kumar-2016, PHI.

II Year B.Tech. ECE I-Sem

L T P C
3 1 0 4

(18ES0EE03) Network Theory

Course Outcomes:

1. At the end of this course students will demonstrate the ability to
2. Understand basics electrical circuits with nodal and mesh analysis.
3. Appreciate electrical network theorems.
4. Apply Laplace Transform for steady state and transient analysis.
5. Determine different network functions.
6. Appreciate the frequency domain techniques

Syllabus

Unit I: Network Analysis:

Node and Mesh Analysis, matrix approach of network containing voltage and current sources, and reactances, source transformation and duality.

Unit II: Network Theorems:

Superposition theorem, Thevenin theorem, Norton theorem, Maximum power transfer theorem, Reciprocity theorem, Compensation theorem.

Unit III: Electrical Circuit Analysis Using Laplace Transforms

Analysis of RC, RL, and RLC networks with and without initial conditions for standard inputs. Poles and Zeros. Behaviors of series and parallel resonant circuits.

Unit IV: Transient Behavior

Transient behavior, concept of complex frequency, Driving points and transfer functions poles and zeros of immittance function, their properties, sinusoidal response from pole-zero locations, convolution theorem .

Unit V: Two Port Network and Filters

Two port network and interconnections, Introduction to band pass, low pass, high pass and band reject filters.

Text Books:

1. Van, Valkenburg, "Network analysis"; Prentice hall of India, 2000
2. Sudhakar, A., Shyammohan, S. P. "Circuits and Network"; Tata McGraw-Hill New Delhi, 1994.

Reference Books:

1. A William Hayt, "Engineering Circuit Analysis" 8th Edition, McGraw-Hill Education, 2013.
2. G.K.Mittal, "Network Analysis", Khanna Publications, 2010.

(18PC0EC04) ELECTRONIC DEVICES LABORATORY

Hands-on experiments related to the course contents of EC01

Course Objectives

1. To understand operation of semiconductor devices.
2. To identify the components and characteristics of various active devices.

Course Outcomes:

1. Understand the current voltage characteristics of semiconductor devices.
2. Analyze dc circuits and relate ac models of semiconductor devices with their physical operation.
3. Design and analyze of electronic circuits.
4. Evaluate frequency response to understand behavior of Electronics circuits.

Part A: (Only for viva-voce Examination)

ELECTRONIC WORKSHOP PRACTICE (in 3 Laboratory sessions):

Identification, Specification, testing of R,L,C components (color codes), Potentiometers (SPDT, DPDT, and DIP), Coils, Gang Condensers, Relays, Bread Board, PCB's

Identification, Specification, testing of Active devices: Diodes, BJT, Low power JFET's, MOSFET's, Power

Transistors, LED's, LCD's, SCR, UJT.

Study and operation of:

1. Multimeters (Analog and Digital)
2. Function Generator
3. Regulated Power Supplies
4. CRO

Part B: (For Laboratory Examination – Minimum of 12 experiments)

1. Forward Bias V-I characteristics of PN junction Diode
2. Reverse Bias V-I characteristics of PN junction Diode.
3. Zener diode V-I characteristics.
4. Zener diode as voltage regulator.
5. Schottky diode V-I characteristics
6. Input and output Characteristics of a BJT in CE configuration.
7. Input and output Characteristics of a BJT in CB configuration.
8. Input and output Characteristics of a BJT in CC configuration.
9. FET characteristics in CS configuration.
10. FET characteristics in CD configuration.
11. FET characteristics in CG configuration.
12. N-MOSFET characteristics
13. P-MOSFET characteristics
14. Switching characteristics of photo diode

II Year B.Tech. ECE I-Sem

L	T	P	C
0	0	2	1

(18PC0EC05) DIGITAL SYSTEM DESIGN LABORATORY

1. To study and verify the truth table of logic gates.
2. To realize half and full adder
3. To realize half and full subtractor.
4. To study and verify the truth table of BCD to excess-3 code converter and vice versa.
5. To convert given binary numbers to gray codes and vice versa.
6. To verify the truth table of multiplexer using IC 74153 and de-multiplexer using IC 74139.
7. To verify the truth table of multiplexer and de-multiplexer using NAND gates.
8. To verify the truth table of one bit and two bit comparator using logic gates.
9. To verify the truth table of the following flip flop
 - I. JK Master Slave
 - II. D-type
 - III. T-type
13. To store a set of data in a RAM using IC 2114
14. Design of basic Gates: AND, OR, NOT using Hardware Descriptive Language – (VHDL/Verilog/Equivalent)
15. Design of 2:1 Mix using basic gates using (VHDL/Verilog/Equivalent)
16. Design of Full Adder, Full Subtractor using 3 modeling styles in (VHDL/Verilog/Equivalent)
17. Design of all type of Flip-Flops using Sequential Constructs in (VHDL/Verilog/Equivalent)
18. Design counters (MOD 5, MOD 8) using (VHDL/Verilog/Equivalent)

Note: Minimum of 12 experiments to be conducted.

(18BS0MA03) MATHEMATICS-III

Course Objectives

1. To learn the Concepts & properties of Random variables and Probability distributions
2. To learn the concepts of correlations and regressions .
3. To understand Concepts & properties of the testing of hypothesis for large & small samples.
4. To provide basic concepts of Complex functions and Properties.
5. To learn the basics of Conformal & Bilinear Transformations.

Course Outcomes

At the end of the course, the student will be able to:

1. Identify the random variables involved in the probability models.
2. Calculate the Correlation and linear regression for a given data set.
3. Applying various statistical tests in testing of hypotheses on the given data.
4. Evaluation of integrals by using Cauchy's integral theorem & formula
5. Understanding the concepts of Conformal & Bilinear transformations.

Syllabus

UNIT-I: Random variables and probability distributions.

Random variables – Discrete and continuous. Probability distributions, mass function/ density function of a probability distribution. Mathematical Expectation, Moment generating function of probability distribution. Binomial, Poisson & normal distributions and their properties.

UNIT-II: Multiple Random variables, Correlation & Regression

Joint probability distributions- Joint probability mass / density function, Marginal probability mass / density functions, Covariance of two random variables, Correlation -Coefficient of correlation, The rank correlation, Regression- Regression Coefficient, The lines of regression.

UNIT-III: Sampling Distributions and Testing of Hypothesis

Sampling: Definitions of population, sampling, statistic, parameter. Types of sampling, Expected values of Sample mean and variances, sampling distribution, Standard error, Sampling distribution of means and sampling distribution of variances.

Testing of hypothesis: Null hypothesis, Alternate hypothesis, type I, & type II errors – critical region, confidence interval, and Level of significance. One sided test, Two sided test,

Large sample tests: Test of Equality of means of two samples equality of sample mean and population mean.

UNIT-IV: Functions of Complex Variables

Complex functions and its representation on Argand plane, Concepts of limit Continuity, Differentiability, Analyticity, and Cauchy-Riemann conditions, Harmonic functions – Milne – Thompson method.

Line integral – Evaluation along a path and by indefinite integration – Cauchy's integral theorem – Cauchy's integral formula – Generalized integral formula

UNIT – V: Conformal mapping.

Power series expansions of complex functions : Radius of convergence – Expansion in Taylor's series, Maclaurin's series and Laurent series. Singular point –Isolated singular point – pole of order m – essential singularity. Residues– Residue theorem.

Conformal mapping: Transformation of z -plane to w -plane by a function, Conformal transformation. Standard transformations- Translation; Magnification and rotation; inversion and reflection, Transformations like e^z , $\log z$, z^2 , and Bilinear transformation. Properties of Bilinear transformation, determination of bilinear transformation when mappings of 3 points are given .

Suggested Text/Reference Books

1. B.S. Grewal, Higher Engineering Mathematics, Khanna Publishers, 36th Edition, 2010.
2. Ramana B.V., Higher Engineering Mathematics, Tata McGraw Hill New Delhi, 11th Reprint, 2010.
3. Erwin Kreyszig, Advanced Engineering Mathematics, 9th Edition, John Wiley & Sons, 2006.
4. G.B. Thomas and R.L. Finney, Calculus and Analytic geometry, 9th Edition, Pearson, Reprint, 2002.

II Year B.Tech. ECE I-Sem

L	T	P	C
0	0	2	1

(18PC0EC06) BASIC SIMULATION LABORATORY

1. Basic Operations on Matrices
2. Generation of Various Signals and Sequences (Periodic and Aperiodic), such as UNIT Impulse, UNIT Step, Square, Saw tooth, Triangular, Sinusoidal, Ramp, Sinc.
3. Operations on Signals and Sequences such as Addition, Multiplication, Scaling, Shifting, Folding, Computation of Energy and Average Power.
4. Finding the Even and Odd parts of Signal/Sequence and Real and Imaginary parts of Signal.
5. Convolution for Signals and sequences.
6. Auto Correlation and Cross Correlation for Signals and Sequences.
7. Verification of Linearity and Time Invariance Properties of a given Continuous/Discrete system
8. Computation of UNIT sample, UNIT step and Sinusoidal responses of the given LTI system and verifying its physical realiazability and stability properties.
9. Finding the Fourier Transform of a given signal and plotting its magnitude and phase spectrum.
10. Waveform Synthesis using Laplace Transform.
11. Locating the Zeros and Poles and plotting the Pole-Zero maps in S-plane and Z-Plane for the given transfer function.
12. Sampling Theorem Verification.
13. Removal of noise by Autocorrelation / Cross correlation

Note: Minimum of 10 experiments to be conducted in the Laboratory

MATLAB, SkyLab or equivalent software to be used.

II Year B.Tech. ECE I-Sem

L	T	P	C
3	0	0	0

(18MC0EN01) CONSTITUTION OF INDIA

Course Objective:

The course is structured and taught to enable a non social science students to appreciate and understand the evolution of the institutions and dynamics of functioning of the institutions. This constitutes itself as political process and affects and effects the individual and the society in its life as a person and citizen and develops and forms an attitude towards the political system. The main aim is to help individuals develop into responsible, critical, reflective and productive citizens.

Course outcome:

It facilitates the understanding of various Government of Indian acts their provisions and reforms. It helps to know the salient features in making of Indian constitution and appreciate the constitutional principles and institutional arrangements and makes them learn about the fundamental rights and duties and the directive principle of state policy. It inculcates skills to evaluate the evolution, functioning and consequences of political parties in India and to identify how electoral rules and procedure in India effect election outcomes.

Syllabus:

Unit- I Evolution of Indian Constitution

1. Constitutionalism
2. 1909, 1919 and 1935 Acts
3. Constituent Assembly- Composition and Functions

UNIT-II Major features and Provisions

1. Salient features
2. Fundamental Rights and Duties
- 3 Directive Principles of State Policy

Unit-III Constitutional Institutions

1. Union Government-Executive (President, Prime Minister and Council of Ministers)
 - Legislature (Parliament-Loksabha, Rajyasabha)
 - Judiciary- Supreme Court and High Court
2. State Government-Executive (Governor, Chief Minister and Council of Ministers)
 - Legislature (Legislative Assembly and Legislative Council)
3. Panchayat Raj institutions and Urban local bodies

Unit- IV. Federalism

- Union – State relations(Legislative, Administrative and Financial)
- Politics of federal governance and Frictions in Federal polity

Unit-V- Political Process

1. Political Parties-National and Regional
2. Pressure groups
3. Civil Society and Popular movements
4. Election Commission of India

Reading List:

1. D. D. Basu (2015) Introduction to the Constitution of India, New Delhi: LexisNexis.
2. Peu Gosh(2018) Indian Government and Politics, Delhi, PHI Pvt Ltd
3. Granville Austin (1999), The Indian Constitution – Corner Stone of a Nation, New Delhi: Oxford.
4. P.M. Bakshi (2018), The Constitution of India-LexisNexis ,Delhi

(18PC0EC07) ANALOG AND DIGITAL COMMUNICATION

Prerequisite: Signals and Systems

Course Objective:

To master the student with different analog and digital modulation techniques and also to analyze the behavior of a communication system in presence of noise and errors.

Course Outcomes:

1. At the end of this course students will demonstrate the ability to
2. Describe the basic components of analog and digital communication system.
3. Explain and analyze various types of analog and digital modulation techniques.
4. Analyze the behavior of a communication system in presence of noise and errors.
5. Demonstrate optimal transmission and reception of digital signals

Syllabus

UNIT I: Analog Modulation and Demodulation

Need for modulation, Amplitude Modulation and Demodulation Techniques: AM-Square Law and Envelope Detector, DSB-Balanced Modulator and Synchronous Detector, SSB- Phase Discriminator and Sync Detector, VSB, Angle Modulation and Demodulation Techniques: FM-Direct FM Armstrong Method and PLL Method, PM, Frequency Division Multiplexing and Time Division multiplexing.

UNIT II: Noise in Analog Modulation Systems

Noise , Types of noise , Gaussian and white noise characteristics, Noise in amplitude and Frequency modulation systems, SNR and Figure of Merit calculations, Pre-emphasis and De-emphasis, Threshold effect in angle modulation.

UNIT III: Elements of Digital Communication Systems

Model of Digital Communication System, Advantages of Digital communication systems, Sampling process, Pulse code modulation (PCM), Differential pulse code modulation. Delta modulation, ADM, Noise considerations in PCM and DM.

UNIT IV:Base band and Pass band Transmission

Elements of Detection Theory, Optimum detection of signals in noise, Coherent communication with waveforms- Probability of Error evaluations. Baseband Pulse Transmission- Inter symbol Interference and Nyquist criterion. Pass band Digital Modulation and Demodulation schemes- Minimum Shift Keying, Frequency Shift Keying, Phase Shift Keying, Quadrature Amplitude Modulation.

UNIT V:Optimal Reception and Tradeoffs

Digital Modulation tradeoffs. Optimum demodulation of digital signals over band-limited channels- Maximum likelihood sequence detection (Viterbi receiver). Equalization Techniques. Synchronization and Carrier Recovery for Digital modulation.

Text Books:

1. "Communication Systems" - B.P Lathi, BS Publication, 2004.
2. "Communications Systems", Simon Haykin., John Wiley and Sons, 2nd Edition, 2001.
3. "Principles of Communication Systems"- Herbert Taub, Donald L Schiling, Gautam Saha, 3rd Edition, McGraw-Hill, 2008.
4. "Digital and Analog Communication Systems"- Sam Shanmugam, John Wiley, 2005
5. "Digital Communications"- John G. Proakis, Masoud Saheli- 5th edition, McGraw-Hill, 2008

Reference Books:

1. "Analog and Digital Communication" – K. Sam Shanmugham, Wiley, 2005.
2. "Electronic Communications" – Dennis Roddy and John Coolean, 4th Edition, PEA, 2004.
3. "Communication Systems Engineering", Proakis J. G. and Salehi M., Pearson Education, 2002.
4. "Principles of Communication Engineering", Wozencraft J. M. and Jacobs I. M., John Wiley, 1965.
5. "Digital Communication", Kluwer , Barry J. R., Lee E. A. and Messerschmitt D. G., Academic Publishers, 2004.

II Year B.Tech. ECE II-Sem

L	T	P	C
3	0	0	3

(18PC0EC08) ANALOG CIRCUITS

Prerequisite: Electronic Devices

Course Objectives:

To gain thorough knowledge of amplifiers with low and high frequency analysis.

To gain knowledge of Op-amp and its applications and data converters.

Course Outcomes:

At the end of this course students will demonstrate the ability to

1. Understand the characteristics of transistors
2. Design and analyze various amplifier circuits
3. Design sinusoidal oscillators
4. Understand the functioning of OP-AMP and design OP-AMP based circuits
5. Design ADC and DAC

Syllabus

UNIT I: Transistor Low Frequency Analysis

Low frequency transistor models, Analysis of CE, CB, CC amplifier using h parameter model: estimation of voltage gain, input resistance, output resistance etc., multistage amplifiers, low frequency analysis of multistage amplifiers, design procedure for RC coupled amplifier.

UNIT II: Transistor High frequency model and power amplifiers

High frequency transistor models, CE short circuit current gain, relation between f_a , f_β , f_T , frequency response of single stage and multistage amplifiers, cascode amplifier..Power Amplifiers - Various classes of operation (Class A, B, AB, C etc.), their power efficiency and linearity issues.

UNIT III: Feedback amplifiers and Oscillators

Feedback topologies: Voltage series, current series, voltage shunt, current shunt, effect of feedback on gain, bandwidth etc., concept of stability, gain margin and phase margin..Oscillators: Review of the basic concept, Barkhausen criterion, RC oscillators : Phase Shift, Wien Bridge, LC oscillators: Hartley, Colpitts, Clapp, Crystal oscillators.

UNIT IV: Basics of OP-AMP and its Applications

Basic structure, principle and modes of operation, AC and DC characteristics. CMRR and PSRR. OP-AMP applications: Integrator and Differentiator, Summing amplifier, instrumentation amplifier, Schmitt trigger and its applications. Filters: Design of first order Low pass, high pass, band pass and band stop filters.

UNIT V: A/D and D/A Convertors

Digital-to-analog converters (DAC): Weighted resistor, R-2R ladder, Inverted R-2R, Analog-to-digital converters (ADC): Flash, Single slope, dual slope, Successive approximation, Counter type, DAC/ADC Specifications.

Text Books:

1. Analog Electronics, A.K. Maini, Khanna Publishing House
2. Linear Integrated circuits, Roy Chowdary and Shail B. Jain 5th edition.
3. Paul R. Gray and Robert G.Meyer, Analysis and Design of Analog Integrated Circuits,
John Wiley, 3rd Edition

Reference Books:

1. J. Millman and A. Grabel, Microelectronics, 2nd edition, McGraw Hill, 1988.
2. A.S. Sedra and K.C. Smith, Microelectronic Circuits, Saundar's College11, Publishing, Edition IV
3. Op - Amps and Linear Integrated Circuits, Ramakanth A.Gayakwad, Fourth edition, PHI Publication.

II Year B.Tech. ECE II-Sem

L	T	P	C
3	1	0	4

(18PC0EC09) PROBABILITY THEORY AND STOCHASTIC PROCESSES

Prerequisite: Nil

Course Objective:

Aim to understand random signal and system response

Course Outcomes:

At the end of this course students will demonstrate the ability to

1. Understand representation of random signals
2. Investigate characteristics of random processes
3. Make use of theorems related to random signals
4. To understand propagation of random signals in LTI systems.

Syllabus

UNIT I: Probability and Random Variable

Probability: Probability introduced through Sets and Relative Frequency, Experiments and Sample Spaces, Discrete and Continuous Sample Spaces, Events, Probability Definitions and Axioms, Mathematical Model of Experiments, Probability as a Relative Frequency, Joint Probability, Conditional Probability, Total Probability, ayes' Theorem, Independent Events.**Random Variable:**

Definition of a Random Variable, Conditions for a Function to be a Random Variable, Discrete, Continuous and Mixed Random Variables

UNIT II: Distribution & Density Functions and Operation on One Random Variable – Expectations

Distribution & Density Functions: Distribution and Density functions and their Properties - Binomial, Poisson, Uniform, Gaussian, Exponential, Rayleigh and Conditional Distribution, Methods of defining Conditional Event, Conditional Density, and Properties.

Operation on One Random Variable – Expectations: Introduction, Expected Value of a Random Variable, Function of a Random Variable, Moments about the Origin, Central Moments, Variance and Skew, Chebychev's Inequality, Characteristic Function, Moment Generating Function, Transformations of a Random Variable: Monotonic Transformations for a Continuous Random Variable, Non-monotonic Transformations of Continuous Random Variable, Transformation of a Discrete Random Variable

UNIT III: Multiple Random Variables and Operations

Multiple Random Variables: Vector Random Variables, Joint Distribution Function, Properties of Joint Distribution, Marginal Distribution Functions, Conditional Distribution and Density – Point Conditioning, Conditional Distribution and Density – Interval conditioning, Statistical Independence, Sum of Two Random Variables, Sum of Several Random Variables, Central Limit Theorem (Proof not expected), Unequal Distribution, Equal Distributions..Operations on Multiple Random Variables: Expected Value of a Function of Random Variables: Joint Moments about the Origin, Joint Central Moments, Joint Characteristic Functions, And Jointly Gaussian Random Variables: Two Random Variables case, N Random Variable case, Properties, Transformations of Multiple Random Variables, Linear Transformations of Gaussian Random Variables.

UNIT IV: Stochastic Processes – Temporal Characteristics

The Stochastic Process Concept, Classification of Processes, Deterministic and Nondeterministic Processes, Distribution and Density Functions, Concept of Stationary and Statistical Independence, First-Order Stationary Processes, Second-Order and Wide-Sense Stationarity, Nth Order and Strict-Sense Stationary, Time Averages and Ergodicity, Mean-Ergodic Processes, Correlation-Ergodic Processes, Autocorrelation Function and its Properties, Cross-Correlation Function and its Properties, Covariance and its Properties, Linear System Response of Mean and Mean-squared Value, Autocorrelation Function, Cross-Correlation Functions, Gaussian Random Processes, Poisson Random Process.

UNIT V: Stochastic Processes – Spectral Characteristics

Power Spectrum: Properties, Relationship between Power Spectrum and Autocorrelation Function, Cross-Power Density Spectrum, Properties, Relationship between Cross-Power Spectrum and Cross-Correlation Function, Spectral Characteristics of System Response: Power Density Spectrum of Response, Cross-Power Spectral Density of Input and Output of a Linear System

Text Books:

1. H. Stark and J. Woods, ``Probability and Random Processes with Applications to Signal Processing," Third Edition, Pearson Education
2. A. Papoulis and S. Unnikrishnan Pillai, ``Probability, Random Variables and Stochastic Processes," Fourth Edition, McGraw Hill.

Reference Books:

3. K. L. Chung, Introduction to Probability Theory with Stochastic Processes, Springer International
4. P. G. Hoel, S. C. Port and C. J. Stone, Introduction to Probability, UBS Publishers,
5. P. G. Hoel, S. C. Port and C. J. Stone, Introduction to Stochastic Processes, UBS Publishers
6. S. Ross, Introduction to Stochastic Models, Harcourt Asia, Academic Press.

(18PC0EC10) ANALOG AND DIGITAL COMMUNICATION LABORATORY

1. Amplitude modulation and demodulation
1. DSB-SC Modulator & Detector
2. SSB-SC Modulator & Detector (Phase Shift Method)
3. Frequency modulation and demodulation.
4. Study of spectrum analyzer
5. Pre-emphasis & de-emphasis
6. Time Division Multiplexing & De multiplexing
7. Verification of Sampling Theorem
8. Pulse Amplitude Modulation & Demodulation
9. PCM Generation and Detection
10. Differential Pulse Code Modulation
11. Delta Modulation
12. Amplitude Shift Keying: Generation and Detection
13. Frequency Shift Keying: Generation and Detection
14. Phase Shift Keying: Generation and Detection

NOTE: Minimum of 12 experiments to be conducted.

II Year B.Tech. ECE II-Sem

L	T	P	C
0	0	2	1

(18PC0EC11) ANALOG CIRCUITS LABORATORY

(For Laboratory Examination – Minimum of 12 experiments)

PART A:

1. Common Emitter Amplifier
2. Common Base Amplifier
3. Common Source Amplifier
4. Two stage RC Coupled Amplifier
5. Current Shunt and Voltage Feedback Amplifier
6. Cascode Amplifier
7. Wien Bridge Oscillator using Transistors
8. RC Phase Shift Oscillator using Transistors
9. Hartley and Colpitt's Oscillator

PART B:

1. Inverting and Non-inverting Amplifiers using Op Amps.
2. Comparators using Op Amp.
3. Integrator Circuit using IC 741.
4. Differentiator circuit using Op Amp.
5. To plot the frequency response of 1st order LPF.
6. To plot the frequency response of 1st order HPF

Course Outcomes:

At the end of this course, students will demonstrate the ability to

- Understand the modelling of linear-time-invariant systems using transfer function and state-space representations.
- Understand the concept of stability and its assessment for linear-time invariant systems.
- Design simple feedback controllers.

Module 1: Introduction to control problem

Industrial Control examples. Mathematical models of physical systems. Feedback Control: Open-Loop and Closed-loop systems. Benefits of Feedback. Block diagram algebra, Transfer Function of Servo motor (AC&DC) Synchro transmitter and Receiver, Representation by Signal flow graphs.

Module 2: Time Response Analysis

Standard test signals. Time response of first and second order systems for standard test inputs. Application of initial and final value theorem. Design specifications for second-order systems based on the time-response. Concept of Stability. Routh-Hurwitz Criteria. Relative Stability analysis. Root-Locus technique. Construction of Root-loci.

Module 3: Frequency-response analysis

Relationship between time and frequency response, Frequency domain specifications Polar plots, Bode plots. Nyquist stability criterion. Relative stability using Nyquist criterion – gain and phase margin.

Module 4: Introduction to Controller Design

Stability, steady-state accuracy, transient accuracy, disturbance rejection, insensitivity and robustness of control systems. Root-loci method of feedback controller design. Design specifications in frequency-domain. Frequency-domain methods of design. Application of Proportional, Integral and Derivative Controllers, Lead and Lag compensation in designs.

Module 5: State variable Analysis

Concepts of state variables. State space model. Diagonalization of State Matrix. Solution of state equations. Eigen values and Stability Analysis. State Transition Matrix and it's Properties. Concept of controllability and observability. Pole-placement by state feedback. Discrete-time systems. Difference Equations. State-space models of linear discrete-time systems

Text Books:

1. M. Gopal, "Control Systems: Principles and Design", McGraw Hill Education, 1997.
2. I. J. Nagrath and M. Gopal, "Control Systems Engineering", New Age International, 2009.

References Books:

1. B. C. Kuo, "Automatic Control System", Prentice Hall, 1995.

II Year B.Tech. ECE II-Sem

L T P C
3 0 0 3

(18BS0MA04) MATHEMATICS IV

Course Objectives:

1. To learn the Concepts & properties of Laplace Transforms solving differential equations using Laplace transform techniques.
2. To provide Numerical approximation to the roots of an equation by various methods.
3. To provide the concepts of Fourier series & Fourier Transform.
4. To provide the concepts of solutions of linear & Non-Linear Partial differential equations and solutions to various applications in Engineering e.g., wave equation, heat equation and Laplace equations.

Course Outcomes:

At the end of the course, the student will be able to:

1. Understand the concept of Laplace Transform and its applications
2. Understand the concept of Inverse Laplace Transform and its applications
3. Visualize relationship between Fourier series & Fourier transforms and its Engineering applications.
4. Find the solutions of Engineering Applications such as wave equation; heat equation and Laplace equations by using partial differential equation.

Syllabus

UNIT-I: Laplace Transform

Definition of integral transform, Domain of the function and kernel for the Laplace transform, Laplace transform of standard functions , First shifting theorem, Laplace transform of functions when they are multiplied or divided by t. Laplace transform of derivatives and integrals-Unit step function-second shifting theorem-Dirac delta function ,Periodic function.

UNIT-II: Inverse Laplace Transform and applications

Inverse Laplace transform by partial fractions, Inverse Laplace transform of functions when they are multiplied or divided by s, Inverse Laplace transform of derivatives and integrals ,Convolution theorem-Solving differential equation by Laplace transforms.

UNIT-III: Fourier series

Definition of periodic function .Fourier expansion of periodic function in a given interval of 2π ,Determination of Fourier coefficients-Fourier series of even and odd functions-Fourier series in any arbitrary interval-even and odd functions-Half-range Fourier Sine and Cosine expansions

UNIT-IV: Fourier Transforms

Fourier integral theorem- Fourier Sine and Cosine integrals, Fourier transforms, Fourier Sine and Cosine transforms –properties of Fourier transforms-Inverse Fourier transforms-Finite Fourier transforms.

UNIT-V: Partial Differential Equations

Introduction and formation of Partial differential equations by elimination of arbitrary constants and arbitrary functions ,solutions of first order linear equations(Lagrange's) and non linear equations (Charpit's method) Method of separation of variables for second order equations.

Text Books:

1. Higher Engineering Mathematics By B S Grewal, Khanna Publications.
2. Engineering Mathematics By Erwin Kreyszig, Wiely Publications

Reference Books:

1. Engineering Mathematics By Srimantapal & Subodh C. Bhunia, Oxford University Press.
2. Advanced Engineering Mathematics By Peter V O'neil, Cengage Learning
3. Mathematical Methods By Dr. S. Sivaiah, University Science Press 2013.
4. Mathematical Methods By T. K. V. Iyengar & B. Krishna Gandhi, S. chand. Publishing.

II Year B.Tech. ECE II-Sem

L T P C
3 0 0 3

(18SSMB02) ECONOMICS FOR ENGINEERS

Course Objective:

To learn the basic Business types, impact of the Economy on Business and Firms specifically. To analyze the Budget and understand the employment.

Course Outcome:

1. The students will understand the various Forms economic variables.
2. The students will understand the importance of Capital Budgeting, Demand, and Supply.
3. The Students can study the Commercial Banks, Cost & Cost Control, Employment - Informal, Organized, Unorganized Sectors.

Syllabus

UNIT-1

Basic Principles and Methodology of Economics. Demand/Supply-Elasticity- Government Policies and Application. Theory of the firm and Market Structure. Aggregate Demand and Supply (IS/LM). Price Indices (WPI/CPI), Interest rates.

UNIT-2

Central Bank Monetary Aggregates; Commercial Banks & Their functions: Capital and debt markets. Monetary and Fiscal Policy Tools & their impact on the economy- Inflation and Phillips curve.

UNIT-3

Elements of Business / Managerial Economics and forms of organizations. Cost & Cost Control -Techniques, Types of costs, Budgets even analysis, Statement - cash flow, financial. Case study method.

UNIT-4

Capital Budgeting. Investment Analysis – NPV, ROI, IPR Payback period, Depreciation, Time Value of money. Business forecasting - Elementary techniques.

UNIT- 5

Employment - Informal, Organized, Unorganized, Public, Private, Challenges and Policy debates, Fiscal, Social, External sectors.

Reference Books

1. Mankiw Gregory N (2002) , Principles of Economics Thompson Asia.
2. V Mote, S Paul, G Gupta (2004) , Managerial Economics, Tata Mc Graw Hill.
3. Misra, S.K. and Puri (2009) , Indian Economy, Himalaya.
4. Pareek Saroj (2003), textbook of Business Economics, Sunrise Publishers.